High mobility group proteins stimulate DNA cleavage by apoptotic endonuclease DFF40/CAD due to HMG-box interactions with DNA.
نویسندگان
چکیده
The DFF40/CAD endonuclease is primarily responsible for internucleosomal DNA cleavage during the terminal stages of apoptosis. It has been previously demonstrated that the major HMG-box-containing chromatin proteins HMGB1 and HMGB2 stimulate naked DNA cleavage by DFF40/CAD. Here we investigate the mechanism of this stimulation and show that HMGB1 neither binds to DFF40/CAD nor enhances its ability for stable binding to DNA. Comparison of the stimulatory activities of different truncated forms of HMGB1 protein indicates that a structural array of two HMG-boxes is required for such stimulation. HMG-boxes are known to confer specific local distortions of DNA structure upon binding. Interestingly, the presence of DNA strand cross-links formed by cisplatin or transplatin, which may somehow mimic distortions induced by HMG-boxes, also affects DNA cleavage by the nuclease. The data presented suggest that changes induced in DNA conformation upon HMG-box binding makes the substrate more accessible to cleavage by DFF40/CAD nuclease and thus may contribute to preferential linker DNA cleavage during apoptosis.
منابع مشابه
Short Communication DFF40/CAD HYPERSENSITIVE SITES ARE POTENTIALLY INVOLVED IN HIGH MOLECULAR WEIGHT DNA FRAGMENTATION DURING APOPTOSIS
Sequential cleavage of genomic DNA into large-scale DNA fragments of 50-300-kb, followed by formation of monoand oligonucleosomal DNA fragments, is a biochemical hallmark of programmed cell death (apoptosis). The endonuclease DFF40/CAD mediates regulated internucleosomal DNA fragmentation and chromatin condensation in cells undergoing apoptosis. DFF40 hypersensitive sites were detected in purif...
متن کاملEngineered apoptotic nucleases for chromatin research
We have created new genomics tools for chromatin research by genetically engineering the human and mouse major apoptotic nucleases that are responsible for internucleosomal DNA cleavage, DNA fragmentation factor (DFF). Normally, in its inactive form, DFF is a heterodimer composed of a 45-kDa chaperone inhibitor subunit (DFF45 or ICAD), and a 40-kDa latent endonuclease subunit (DFF40 or CAD). Up...
متن کاملCurcumin induces caspase-3-dependent apoptotic pathway but inhibits DNA fragmentation factor 40/caspase-activated DNase endonuclease in human Jurkat cells.
Curcumin is a natural pigment that has been shown to induce cell death in many cancer cells; however, the death mode depends on the cell type and curcumin concentration. Here we show that, in Jurkat cells, 50 micromol/L curcumin severely lowers cell survival and induces initial stage of chromatin condensation. It also induces caspase-3, which is sufficient to cleave DNA fragmentation factor 45 ...
متن کاملThe DFF40/CAD endonuclease and its role in apoptosis.
The sequential generation of large-scale DNA fragments followed by internucleosomal chromatin fragmentation is a biochemical hallmark of apoptosis. One of the nucleases primarily responsible for genomic DNA fragmentation during apoptosis is called DNA Fragmentation Factor 40 (DFF40) or Caspase-activated DNase (CAD). DFF40/CAD is a magnesium-dependent endonuclease specific for double stranded DN...
متن کاملCaspase-activated DNase/DNA fragmentation factor 40 mediates apoptotic DNA fragmentation in transient cerebral ischemia and in neuronal cultures.
Nuclear changes, including internucleosomal DNA fragmentation, are characteristic features of neuronal apoptosis resulting from transient cerebral ischemia and related brain insults for which the molecular mechanism has not been elucidated. Recent studies suggest that a caspase-3-mediated mechanism may be involved in the process of nuclear degradation in ischemic neurons. In this study, we clon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biochimica Polonica
دوره 55 1 شماره
صفحات -
تاریخ انتشار 2008